

IT Architecture for Early Warning Systems in Disaster Management

TATA CONSULTANCY SERVICES

© Tata Consultancy Services Itd.

7 December 2009

1

Disaster Mitigation, Monitoring & Management (DMMM)

- Need to
 - Mitigate Risk through a robust IT Architecture
 - Monitor through a Decision Support System & Dissemination
 - Manage through Empowerment

What comes to mind when you hear the term IT architecture?

- Client server architecture?
- 2-Tier Architecture
- 3-Tier Architecture
- N-tier architecture?

What is architecture?

•The structure of the components, their inter-relationships, the principles and guidelines governing their evolution over time.

•An enterprise is an organization consisting of people, process, and technology which must coordinate functions and share information to accomplish its mission.

•The objective is to create an enterprise architecture which relates business goals to IT architecture.

Architectural Principles

Why an Enterprise architecture?

•Alignment between business goals and IT

•Inventory of baseline architecture, specification of target architecture and steps to guide transition from baseline to desired target architecture

•Managing integration – consistency of business rules, interoperability of systems, and systems integration

Managing change/migration

ENTERPRISE ARCHITECTURE - A FRAMEWORK

							1		1				
	DATA	What	FUNCTION	How	NETWORK	Where	PEOPLE	Who	TIME	When	MOTIVATION	Why	
SCOPE (CONTEXTUAL)	List of Things Important to the Business	nt	List of Processes the Business Performs		List of Locations in the Business Oper	n which rates	List of Organizations Important to the Busin	iess	List of Events Si to the Business	gnificant	List of Business Goa	als/Strat	SCOPE (CONTEXTUAL)
Planner	ENTITY = Class of Business Thing		Function = Class of Business Process		Node = Major Bus	siness	People = Major Orga	nizations	Time = Major Bu	iness Event	Ends/Means=Major B Critical Success Factor	lus. Goal/ or	Planner
ENTERPRISE MODEL (CONCEPTUAL)	e.g. Semantic Model		e.g. Business Process	Model	e.g. Business Log System	istics	e.g. Work Flow Mode) , , ,	e.g. Master Sche	edule	e.g. Business Plan		ENTERPRISE MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Reln = Business Relat	tionship	Proc. = Business Proc I/O = Business Resour	ess ces	Node = Business L Link = Business Lir	ocation hkage	People = Organization Work = Work Product	n Unit	Time = Business Cycle = Business	Event Cycle	End = Business Obje Means = Business S	ective trategy	Owner
SYSTEM MODEL (LOGICAL)	e.g. Logical Data Mod		e.g. Application Archite		e.g. Distributed Sy Architecture	vstem e	e.g. Human Interface Archited	cture	e.g. Processing	Structure	e.g., Business Rule M		SYSTEM MODEL (LOGICAL)
Designer	Ent = Data Entity Reln = Data Relations	ship	Proc .= Application Fu I/O = User Views	unction	Node = I/S Function (Processor Storage Link = Line Charace	on le etc) cteristics	People = Role Work = Deliverable		Time = System Cycle = Proce	Event ssing Cycle	End = Structural Ass Means =Action Asse	sertion ertion	Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Mo	odel	e.g. System Design		e.g. Technology Ar		e.g. Presentation Arch		e.g. Control Stru	cture	e.g. Rule Design	2	TECHNOLOGY MODEL (PHYSICAL)
Builder	Ent = Segment/Table, Reln = Pointer/Key/et	/etc. tc.	Proc.= Computer Fund I/O = Data Elements/S	ction ets	Node = Hardware Software Link = Line Specifi	/System ications	People = User Work = Screen Form	at	Time = Execute Cycle = Compo	nent Cycle	End = Condition Means = Action		Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Contractor	e.g. Data Definition		e.g. Program	t	e.g. Network Arch	nitecture	e.g. Security Archite	ecture	e.g. Timing Def	e Cycle	e.g. Rule Specificatio	n 10 ¹⁰ 1	DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT) Sub- Contractor
FUNCTIONING ENTERPRISE	e.g. DATA		e.g. FUNCTION		e.g. NETWORK		e.g. ORGANIZATION		e.g. SCHEDULI	1	e.g. STRATEGY		FUNCTIONING ENTERPRISE

0101001010101010001

EA Development

- **EA Implementation**
- ✓ Develop Proof of Concept (POC) for defined EA
- Develop foundation architecture (Enterprise Service Bus, Standards, Security Infrastructure, etc)
- Assist in developing a Business case for IT projects using ROI analysis
- ✓ Maintain the alignment of the IT solution with the target architecture and sequencing plan.
- Evolve EA at the end of every IT project, based on the experience and lessons learned during its implementation to ensure its robustness.

Server Consolidation - Future

TRATIAN CONSULTANCY SERVICES

Server Consolidation Through Virtualization Delivers the Following Benefits:

- 1. Good amount of headroom for internal growth and dynamic resource sharing
- 2. Resizing activity becomes almost seamless.
- 3. Reduced server management costs fewer systems to manage
- 4. Higher application uptime better RAS in higherend servers and fewer components to fail
- Reduced server sizing through amortization of peaks across applications
- 6. Increased normal utilization of servers
- Dynamic re-utilization of system resources to meet computing needs
- 8. Faster launch of projects no delay in waiting for hardware resources
- Resizing sizing is a RoIT (Return on IT) exercise and production requirements may be different from initial sizing.

10100110101010100

TRATION COMISULITANICY SERVICES

Thank You

0101001101010101010101